
DETERMINATION OF A SET OF MATERIAL THERMOPHYSICAL CHARACTERISTICS FROM 

DATA OF NONSTATIONARY MEASUREMENTS DURING HEATING BY LOCAL HEAT SOURCES 

A. S. Golosov, V. I. Zhuk, A. A. Lopashev, 
and D. N. Chubarov 

UDC 536.2.08 

Exact explicit dependences connecting material thermophysical characteristics 
to the results of measuring nonstationary values of the primary parameters 
during specimen heating by local thermal sources with power varying arbitrar- 
ily in time are presented. 

Heating specimens of materials being investigated by local heat sources of different 
configurations [1-3] is used extensively in thermophysical experiment practice. It should 
be noted that the computed dependences for determination of the thermophysical characteris- 
tics (TPC) are approximate in nature in the majority of cases and, moreover, are obtained 
for particular laws of the variation of the supplied thermal fluxes in time. A solution 
of the problem of determining a TPC set by using measurement data of nonstationary tempera- 
tures and thermal fluxes during heating of semi-bounded specimens by local surface heat 
sources of variable power is presented in this paper as a development of the approach eluci- 

dated in [4]. 

We examine the following mathematical model in application to a two-dimensional heat 
propagation process in a material 

O~T (r, z, ~) + 1 OT (r, z, ~) q_ 
Or ~ r Or 
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T(r,  z, ~)~_~ = T(r,  z, ~)~= = 0, ( 2 ' )  

T(r, z, 0 )=  0, (2") 
that holds, say, during heating of a half-space by local sources forming temperature fields 

with axial symmetry. 

By using Laplace integral T(r, z, s) = ; exp(-sT) T (r, z, ~)d~ and Hankel T(p, z,s)= 
0 

rJ0(pr) T (r, z, s)dr transforms, the solution of the system (1)-(2") can be represented 
0 

1 T (r, z, s) -= .---~ S PJ~ (pr) q (P' s) exp ( - - z  VFP2 + ---~- ) dp, 
0 (p2+ ~S ) 1/2 a (3) 

in the form 

where q(p, S) = ~ rJ0(pr)q(r , s)dr. For heat sources concentrated at a point or on a circle 
0 

of radius R 0, or distributed uniformly within the limits of a circle of radius R 0, respectively, 

the following representations hold for g(p s): Q(s) Q(s) j0(pR0), Q(s) J1(pR0), Q(s) is the 
" " 2 ~ '  2 ~  ~ R o P  

power of the heat source. 
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In the case of a source concentrated on a circle or distributed uniformly within the 
limits of a circle, we have the following expressions for the temperatures at r = 0 and 

z = 0 

T(0,  0, s ) - -  Q(s) exp -- Ro 
2nRo% (4) 

(5) 

In the case of a point source, we have at a distance R 0 away for z = 0 

T (Ro, O, s) -- Q (s) exp ( _  ~ - s  - ) 
2nR0~ - ~ R 0  �9 ( 6 )  

F o r  a s o u r c e  w i t h  a n o r m a l  d e n s i t y  d i s t r i b u t i o n  law o v e r  t h e  s u r f a c e  q ( r ,  x)  = q 0 ( ~ )  

exp  ( - - y r 2 ) ,  w h i c h  c o r r e s p o n d s  t o  q ( p ,  s )  = q 0 ( s )  ~ e x p  - -  , we h a v e  f o r  z = O, r = 0 

a c c o r d i n g  t o  [5]  

T (O, O, s) _ qo (s) ] / -~  ( s ) (  ]/T ) 2s ] / ~  exp ~ erfc . ( 7 )  ,2-V~ 
It follows from (4) and (5) that in the case of sources concentrated in a circle or 

at a point 

d [y (s)/Q (s)l - Ro T (s) 
d~ 2 -V~ ~ Q (s) ' (8) 

w h e r e  T ( s )  i s  t h e  t e m p e r a t u r e  a t  t h e  c e n t e r  o f  t h e  h e a t i n g  z o n e  by  a s o u r c e  c o n c e n t r a t e d  
on a c i r c l e  o f  r a d i u s  R 0 ( r  = 0 ,  z = 0)  o r  t h e  t e m p e r a t u r e  a t  a d i s t a n c e  R 0 f r o m  a p o i n t  
s o u r c e .  T h e r e  f o l l o w s  f r o m  ( 8 )  

Ro p(s)Q(s)s_~/2, Y' (s) Q (s) -- ~ (s) Q' (s) - 2 1 /a  

from which according to [6] we have in the space of originals 

p~ (~) 
a - -  

p~ (~) ' 

where 

(9) 

( io) 

0 

5~(~)-  Ro S~(~_o) f (o_o)_~ /~Q(O)d~do ;  ( l o ' )  
2 V ~ o  

F~ (~) = ~ (~--  20) P(~--0) Q (o) dO. (10") 
0 

After having determined the parameter a by using the dependence (I0), we find the parameter 

X on the basis of (4) and (6) with the appropriate transform inversion procedures taken 
into account 

T 

4~ s/~ -V~ ~ 4a0 ( 11 ) 

Formulas (i0) and (ii) permit determination of a set of the desired parameters a and 

%, however the estimates obtained for the mentioned parameters will visibly be interdepen- 
dent. On the other hand, estimates of the parameters a and X can be obtained by independent 
means by using measurement data in two realizations with different dimensions of the sources 
concentrated on a circle or by using results of temperature measurements at different dis- 
tances from point sources. If one of the sources concentrated in the circle has a radius 

R0, or in the case of point sources (in one realization the temeprature measurements were 
performed at a distance R 0 from the source, and at the distance 2R 0 in the other), then 
there follows from (4) and (6) 
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from which 

"F1 (s) ] 2 T~ (s) (4~Ro~,), 
~ - ~  (2~R~ -- Q2 (s) (12) 

1 T~(s) Q2(s), Z ~  (s) 03 (s) --  ~Ro (13) 

where TI, ~2 are the temperatures at the center of the heating zone in realizations with 
sources concentrated in circles of radii R 0 and 2R 0 (or temperatures at the distances R 0 
and 2R 0 from point sources), QI and Q2 are powers of the sources in the first and second 
realizations. According to [6] we have in the space of originals 

where 

%_ ~1(~) (14) 

~ ( ~ )  

1 ~ o 
~1 (~) - -  ~R 8 ! Q1 (T - -  0) ~ T2 (0 - -  ~) Ol (~) d#dO, 

o (14') 

T 0 

( 14") 
O 0 

In this case the parameter a can be found on the basis of the dependence (i0) by using 
measurement data in some realization. Moreover, the estimate of the parameter a can be 
obtained on the basis of the relationship 

?l(s)  Q~ (s) 
'P~ (s) Q~ (s) 

-- exp (-- ~ / @  Ro), (15) 

from which we write after differentiating with respect to the parameter s and going over 

to originals 

7~ ('0 a ~-'~- 

F2 2 (x) (16) 

where 

Ro !. o) .t. (e)(o _ 

P~ ('0 = J~" (20 - -  ,~) q~l ('~ - -  o) ~2 (o) dO; 
0 

0 0 

~1 (o) = ~ T1 (0 - -  ,~)02 (,~) d,~, n~ (0) = .I P~ (0 - -  ,~) QI (e) dO. 
0 0 

(16 ' )  

(16") 

( 16 ' " )  

In the case of a source distributed within the limits of a circle of radius R 0 we have 

on the basis of (5) 

ds [ q(s) J 2 l / a  q(s) 2-V's-----~' (17) 

where q(s) = q(s)/~s, T(s) = T(0, 0, s), q(s) = Q(s)/~R0 2 There follows from (17) 

2 "Va [~, (s) $ (s) --  T (s) $' (s)l = (Xc9)-l/2s-a/2q z (s) - -  s-@ (s) q (s). 
Ro 

After going over to originals, we obtain 

(18) 

Ro 
(19) 
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where 

~-1 (g) = S (g - -  20)T (~ - -  0) q (0) dO; ( 19'  ) 
0 

1 ~ 0 
~2 (~) -- f q (T - -  0) ,[ q (O,)(0 - -  O,)1/2 do,dO; ( 1 9 " )  

v ~  6 0 

i ~ ' i  ~- (~)=~_1 5 T ( x - - O )  I $ (0) - -  ] /~  'q(O)(O---~)-l/2do,. 

S i n c e  t h e  p a r a m e t e r s  a, ~,  Xcp a r e  a s sumed  c o n s t a n t ,  t h e n  f o r  known T ( ~ ) ,  q (T)  t h e  

r e l a t i o n  (19 )  p e r m i t s  d e t e r m i n a t i o n  o f  t h e  p a r a m e t e r s  a, Xcp on t h e  b a s i s  o f  e v a l u a t i n g  ~ 

(k = i, 3) for different time intervals of one realization or arbitrary time intervals of 
two realizations with different Q(s) in each. Then 

Ro -- %1~1i [1 - -  (%d%i)(%d~z:)][ 1 - -  (~1J~1i)(~21/~2y)] -1, ( 2 0 )  

(Kc9) I/2 --  #~ i#~ I [I  - -  (m~/m~O(% d % : ) ] [ l  - -  (%f l%~)(% d%]) ]  -~, (21 ) 

where the subscripts i, j refer to values of ~1, @2, ~ ,  evaluated for different time inter- 
vals ~i, ~j of one realization or to arbitrary time intervals of two realizations with dif- 
ferent Q(S). 

Estimates of the parameters a, Xc9 obtained by using (2) and (21) are visibly dependent 
since they are determined by starting from one functional relationship (19). Independent 
estimates of the parameters a and %c0 can be obtained in this case by using measurement re- 
sults in two realizations with the source dimensions R 0 and 2R 0. It follows from (5) that 
a functional relation of the form 

( 1 9 ' " )  

11 - -  ~ ]/-~p T~ (s)/q, (s)] z -- I - -  ~ "V~9 T2 (s)/q2 (s), ( 22 ) 

i s  v a l i d  f o r  t h e  m e n t i o n e d  s o u r c e  d i m e n s i o n s ,  where  5 ,  qz r e f e r  t o  a r e a l i z a t i o n  w i t h  s o u r c e  

d i m e n s i o n s  R0, and T2, q2 t o  a r e a l i z a t i o n  w i t h  t h e  s o u r c e  d i m e n s i o n s  2R0, q z ( s )  = Q l ( s ) /  
(~R02) ,  q 2 ( s )  = Q 2 ( s ) / ( 4 ~ R o 2 ) .  

It follows from (22) 

~ c 9  Tf (s) q2 (s) s = ]/"s-[2T~ (s) ql (s) qz (s) - -  T2 (s) q~ (s)], (23)  

from which we obtain after going over to originals 

where 

(~,c9)1/2 __-- ~I (x) (24) @~ (~) ' 

T 0 

~J. 0:) = ( ql (x - -  0). [  [2T,  (O,) c~ (0 - -  '3') - - 7 2  ('0') $1 (0 - -  O,)] dO, dO; 
b o 

x 0 

~r2 ('~) = f ~l'1 ('r - -  O) f ~'  (o,) ~ (0 - -  O,) do,dO; 
0 0 

~ 1 0 

ql (0) -- [ q~ (O,)(0 --  O,)-1 ~2do,, 
V ~  

(24') 

( 2 4 " )  

1 0 
$3 (0) - [ q2 (o,)(0 - -  e)-~/~do,. 

(24'") 

In its turn the parameter a can be found by starting from the relation (5) with the 
source dimensions used taken into account: 

T2 (s) r (s) 
T1 (s) q~ (s) 

from which we have by differentiating with respect to the parameter s 

(25)  
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f; (s) f,  (s) - f, (s) f'~ (s) = Ro 
2 V ' ~  

w h e r e  f l ( s )  : T 2 ( S ) q l ( s ) ,  f 2 ( s )  = T l ( s ) q 2 ( s ) .  

Going  o v e r  f rom ( 2 5 )  t o  o r i g i n a l s ,  we o b t a i n  

~ (~) 
a - -  ~ ~ ,  

F2 (x) 

where 

- -  [[~ (s) - -  fl (s) f2 (s)], (26) 

(27) 

F1 ('0 = Ro ~ o .[ f, (x -- O) S (0 -- 0,) - ' / 2  [f2 (O,) -- [~ (@)1 dO, dO; (27 ' ) 
9 "1 / "~  ~, ' ,o  o o 

l i  

/~ (z) = S (20 - -  ~) f, (T - -  O) f~ (0) dO; ( 2 7 " )  
0 

0 0 

t ,  (0) = S ql (t~) "T2 (0 - -  t~) d~, f~ (0) ~- S q* (#) Tx (0 - -  ~) dt~. (27'") 
0 0 

In the case when the source density has a normal distribution over a surface, by start- 
ing from the relationship (7) we have 

d ~ ~ (s) 
a ~ i T (s)/qo (s)] = 4? qo (s) 

from which 

1 1 
4? x - V ~ - r  ' 

f (s) ---- T (0, O, s), 

1 1 
a IT' (s) qo (s) -- f (s) qo (s)] = f (s) qo (s) -- 

4? 4 7 1 / ~  

o r  i n  t h e  s p a c e  o f  o r i g i n a l s  

(28)  

s-l/2q~ (s) ( 2 9 )  

where 

-- - - (30)  
~a~ ('0 + (zco)-~/%~ (~) = ~., (% 

,.fi 

$i ('0 ---- S (20 -- "0 f ('~ -- 0) qo (0) dO; ( 30 '  ) 
0 

= 1 ~ o 
,~ ('0 = ~[ qo ('~ - o) J' qo (,~)(o - ~) -"a,~dO; (3o")  

4 '1/~ o 

% ('0 = ~ [ T (~- -  0) qo (0) dO. ( 3 o ' " )  

The functional relationship (30) can be used as in the relationship (19) above to 
find the parameters a, Xcp by using measurement data in one or in two realizations with 

different q0(x), X. 

By usinglthe superposition principle and taking account of the dependence (4), a func- 
tional relation is easily set up between a, X, T, Q for a set of actions N of concentrically 

arranged sources concentrated on circles R = nR 0, n = i, N as N ~ ~. In this case we have 

from which 

Qo(s) -- 2~-- cth / a 2 ' 2~Ro 

Ro ~ + ~ - [  Qo(S) ~ + 2 ~  Qo(S) 
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which corresponds to 

Va [Y'(s) Qo (s) -- ~ (s) ~ (s)l + - Z  (s) + 
Ro 

or in the space of originals 

where 

_{_ 1 s_,/e~(S) Qo(s)=O 
2 

V-d 
~* (~) + ~ ~* (~) + ~ (~) = o, Ro 

T 

q~ (~) = .I (2o - -  ~) 7" (~ - -  o) Qo (o) dO; 
0 

~" 0 

q~* (,~) = j"~ (~ -o )  i ~-'/~ ( o -  ~)-'/~T O) dedO; 
0 0 

0 

2 o o 

(33) 

(34) 

(34') 

(34") 

(34' ") 

Formula (34) can be used to determine the parameters a, I by involving results of 
measuring T, q in one or two realizations analogously to what was done in examining the 
dependence (19). 

On the basis of the dependences obtained, algorithms were developed to compute a set 
of TPC on an electronic computer for different kinds of local heat sources. Checking the 
algorithms developed was performed by formulating a number of numerical experiments where 
results of solving appropriate direct problems of nonstationary heat conductivity were used 
as initial data. 

Results of estimates of the parameters a, Icp in application to a version of specimen 
heating by a local source distributed uniformly within the limits of a circle of radius 
0.005 m are represented in Fig. i, where the following values of the material TPC were 
taken: a = i.i0 -s m2.sec-1; Icp = 129.6 kW- kJ'm-4"K-2; I = 0.036 kW.m-1.K -!. Estimates 
of the parameters a, Icp represented in Fig. i, refer to the case of using "measurement" 

q L ~T AEp a~s 
~ ~ ~ ~ ~ ~ @ ~ ~ ~ + - I  

+ - 2  

. - 5  
/ g X / x . , _  ~ /  

i ,  
o o 

Fig. I. Initial data for the computation and results of estimates 
of the parameters a. Icp during specimen heating by a heat source 
distributed uniformly within the limits of a circle of radius 0.005 
m: AT I, q~ are the specimen surface temperatures at the source 
center and the thermal flux density from a source in the first re- 
alization; AT2, q2 is the same as above in the second realization: 
1, 4) are the parameters a, Icp, computed according to AT, q of the 
first realization; 2, 5) are the same over AT, q of the second reali- 
zation; 3, 6) are the parameters r Icp, computed by using the data 
of "measurements" of two realizations. AT, K; q, kW.m-2; ~, m2-sec-l; 
Icp, kW-kJ-m-4.K-2; ~, c. 
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fO 

1 2 7 q i" 

Fig. 2. Initial data for the computation and results of estimates 
of the parameters a, I during specimen heating by local heat sources 
concentrated on circles of radii 0.005 and 0.01 m: QI, ATI are the 
power of the source and the temperature at the center of the heat- 
ing zone in a realization with source radius 0.005 m; Q2, AT2 is the 
same in a realization with source radius 0.01 m; i are estimates 
of the parameter a; 2 are estimates of the parameter I. Q, W; I, 
W.m-I.K-4 

data for T, q in both some one realization and in two realizations with different heating 
conditions. As is seen from the results presented in Fig. i, the computed values of the 
parameters a, Icp converge sufficiently rapidly to their exact values as the duration of 
the realization time intervals used for the processing increases. 

Results of the estimates of the parameters a, I in application to the case of using 
a set of "measurement" data for T, Q in realizations with sources concentrated on circles 
of radii 0.005 and 0.01 m are represented in Fig. 2. The thermophysical characteristics 
of the specimen material are taken the same as in the case considered above. The results 
of testing the developed numerical algorithms represented in Fig. 2 indicate the possibility 
of efficient restoration of the TPC by using the proposed approach. This latter is verified 
by the sufficiently rapid convergence of the computed values of a, I to the true values 
as a function of the duration of the realization time intervals utilized to calculate the 
functions entering the computed dependences. 

Analogous results hold also for other kinds of sourcesexamined in this paper. 

Therefore, on the basis of the analysis performed, a deduction can be made that the 
exact explicit dependences obtained that relate the specimen TPC to the results of measuring 
different parameters under power varying arbitrarily in time for local heat sources of dif- 
ferent kinds, can be the basis of practical method of determining the TPC of materials. 

Notation. T is the temperature; Q is the heat source power; q is the heat flux; r, 
z are spatial coordinates; ~, 8, ~ are times; a, is thermal diffusivity; I is thermal conduc- 
tivity; c is specific heat; p is density and Jv is the Bessel function of order v. 
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